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Development of in vitro skeletal muscle models for promoter

. . - Differentiation induces skeletal muscle gene expression profiles
. . Transcriptomic profiling of skeletal muscle models .
engineering In myotubes

M E I R A G | X A « PCA analyses show myotube models cluster closer to ex vivo skeletal muscle samples than their myoblast counterparts (Fig. 2A, D). « Differential expression analysis between iPSC myoblasts and myotubes showed 6,498 differentially expressed genes (FDR<0.01).
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transgene to the muscle. The potential of the muscle as a target for gene cellular models. Scale bar sizes are indicated. select muscle gene markers. GeneSet Enrichment Analysis (GSEA) results for Human iPSC-derived and Primary Human models.

therapy highlights a demand for more potent, tissue-specific, and compact
regulators of therapeutic gene expression, such as promoters. Stronger
promoters can provide therapeutic potency at lower viral vector doses, while
a reduction in size allows for more efficient packaging of larger transgenes or
expression cassettes. To our knowledge, there is a lack of accessible data
comparing transcriptomic profiles across multiple in vitro and in vivo skeletal

Conclusions

Identification of a potent, durable muscle promoter using our skeletal muscle models

muscle models pre- and post-differentiation, which can be used for designing Human : . . . : . : : : : .. i
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male mice injected (i.m.) with AAV8-mIRFP713; (E) Native fluorescence in the mouse gastrocnemius transduced with AAV8-mClover3. Scale bar: 10 mm.
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